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Al~tract--This paper presents an extension of the analysis shown in Part I to a polydisperse particle-fluid 
system. The density autocorrelation is shown to he a function of two quantities, a generalized Overlap 
function for which an analytical expression is derived, and the radial distribution function (RDF). In 
Fourier transform space, the density spectrum again appears to be a strong function of the mean particle 
size, and secondarily the mean particle separation distance. One unusual result is previously observed 
oscillations in the density spectrum of a monodisperse system of particles are severely dampened or even 
eliminated in the polydisperse case, depending on the width of the particle size distribution. Apparently 
contributions from different particle correlations interfere with each other, thereby reducing the coherent 
oscillations seen in the monodisperse particle-fluid system. Furthermore at large wavenumbers, the 
spectrum decays with a - 2  power-law, independent of the shape of the particle size distribution. This 
behavior can he traced to the Overlap function which controls the behavior of the spectrum beyond the 
first peak. Remarkably the - 2  power-law spectrum is determined by the shape of the particles (i.e. 
spheres) rather than their spatial distribution (RDF). 

The effect of an asymptotically large pressure gradient on the correlation of several important 
higher-order moments is revisited for the polydisperse system. The relatively simple relationships 
developed for the monodisperse system are lost in the polydisperse case because particles of different sizes 
will be influenced differently by an applied pressure gradient. The result is moments that are of different 
order in velocity can no longer be related to each other (as they were in the monodisperse system), even 
in this idealized flow. A more comprehensive understanding of this phenomenon can only be achieved 
through direct numerical simulation or experiment. 
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I N T R O D U C T I O N  

In a previous publication (hereafter referred to as Part I), Sundaram & Collins (1994) proposed 
a methodology for determining spectral statistics of a particle-laden flow based on considering the 
particle-fluid mixture as a single pseudo-fluid with discontinuities in density at the particle 
boundaries. Two-point correlations are then perfectly equivalent to those for a single incompress- 
ible fluid, with the exception that in this case correlations between the fluid-fluid, particle-fluid, 
and particle-particle phases must be accounted for. Their analysis led to a simple expression for 
the density autocorrelation for a monodisperse system of particles. The autocorrelation was found 
to be a function of two distinct quantities, the Overlap function which is completely defined by 
the geometry of the particles (spheres in this case), and the radial distribution function (RDF), 
which depends on the relative location of the particles. The Overlap function, for particles of 
different sizes, can be derived from simple geometrical considerations by considering the intersec- 
tion volume of the particles. Percus & Yevick (1958) developed an approximate equation for the 
RDF of a hard sphere system. An analytical solution of the Percus-Yevick equation, derived by 
Smith & Henderson (1970), was used to obtain the RDF. One surprising result of the study was 
the density autocorrelation in Fourier transform space was found to have multiple peaks whose 
locations scale primarily with the particle size and secondarily with the mean particle separation 
distance or equivalently the concentration. The qualitative shape of the density spectrum for the 
particle-laden flow indicates a clear departure from classical spectra for incompressible single-fluid 
turbulence (Ishii 1975). This paper presents a generalization of the previous study to a polydisperse 
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mixture of particles. In this case, particle interactions can occur between like and unlike pairs of  
particles, hence the joint RDFs  for all possible combinations are required. The exact solution to 
the Percus-Yevick approximation for a mixture of  hard spheres, first derived by Lebowitz (1964) 
has been used to determine the RDFs. It is recognized that the PY equation contains no 
information regarding the influence turbulent fluctuations in the suspending fluid may have on the 
RDFs, hence the application is again restricted to circumstances where that effect is small (e.g. high 
concentration of particles, gaseous carrier fluid and very low concentration of particles). Once again 
we appeal to experimentalists and simulators to measure the RDFs for mixtures of hard spheres 
in more realistic turbulent flows. The details of the analysis have been presented in Part I, therefore 
the emphasis in Part II has been placed on describing the effects of polydispersity on the earlier 
results. The generalized equations for the density autocorrelation in physical space and spectral 
space have been derived. Furthermore, the case of interpenetration of particles and fluid due to 
an asymptotically large pressure gradient (e.g. shock wave) is revisited. Previously it was shown 
that the results for the density autocorrelation could be extended to higher-order volocity 
correlations (e.g. Reynolds stress) in this limit. The effect polydispersity has on the analysis, and 
on the higher-order moments (as presented in Part I) will be discussed in detail. 

THE DENSITY A U T O C O R R E L A T I O N  

The density autocorrelation for a homogeneous particle-fluid system is defined as 

B(r) = p', (x)p '(x + r) [1] 

As shown previously (Part I), the density autocorrelation for monodisperse spheres is related to 
the/~-correlation, in the following manner 

B(r) = / ~  (x)fl~ (x + r)(pp - pf)2 [2] 

where /~ (x)/~'l (x + r) is the /~-correlation (see Part I for definition), pp is the density of the 
particles and p¢ is the density of the fluid phase. The analysis in Part I then derived the 
relationship between the /~-correlation and the Overlap function and RDF. The results are 
summarized below 

f I(Ir-zt)h(tzt)dz [31 / ~ ( x ) f l ~ ( x  + r) = ~-~/(I r I) + 

or in transform space 

f l ; f l~= v p / (k  1 +  k [4] 
P A 

where 0q is the volume fraction of particles, I(r) is the Overlap function, Vp is the volume of a 
particle and h(r) is the RDF.  The superscript ^ refers to the three dimensional Fourier transform. 
Equation [4] shows that the density autocorrelation in transform space can be expressed as a sum 
of two contributions, the first being a geometric expression that quantifies the particle self-corre- 
lation or intra-particle correlation, and the second accounts for the inter-particle correlations 
between pairs of  particles. The second term is related to the distribution of particles in the system 
which is characterized by the RDF.  The analysis for a polydisperse system will proceed in an 
analogous manner, except that now we must allow for different particle categories based on the 
particle diameter. 

Consider a volume V which contains m different categories of particles, each designated by an 
index j, where j = 1 . . . . .  m. Particles in all categories are assumed to have a uniform density, pp. 
Particle diameters will be designated by a~ . . . . .  trm, and the number of particles within each 
category by N~ . . . . .  Arm. Once again it will be possible to define a #-function for each category 
of  particles 

10 particles of  size aj 
flJ = everywhere else 
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Mathematically, 

x .  1 
where x is the position vector, and xj. is the location of the qth particle of type j. 

Likewise a fl-function for the fluid is defined by 

{10 within fluid 
fir = everywhere else 

fir(x) = 1 - ~ fl/(x) [6] 
j = l  

based on the fact that the sum of the fl-functions is unity. The local microscopic density can then 
be expressed by 

p(x)  = pr+  ~ (p~ - pr)/~j(x) 
j = t  

Performing an ensemble average (see Part I for definition) then yields 

fi = pf'F (pp-- pr) ~ ~j 
j=l 

where 0ej is the volume fraction of particles of type j. By subtraction, the density fluctuation can 
be expressed in terms of the fl-correlation in the following manner 

p'(x) = (pp - pr) ~ B;(x) [7] 
j = t  

which is a straightforward generalization of the result found in Part I. Substituting [7] into [1] yields 

B(r) = (pp  - -  pf)2 ~ ~ fl~(r) [81 
j = | i = l  

where 

fl0(r) = f l~(x)f l~(x + r) 

is a general representation of correlations between like (i = j )  and unlike (/C-j) pairs of particles. 
Transforming [8] results in 

/~(k) = ( p p -  Of) 2 ~ ~/~0(k) [9] 
j = l i = |  

The relationships for the more generalized fl-correlations shown in [8] and [9] can be related to 
the RDFs by following the same procedure discussed in Part I for a monodisperse system. The 
resulting expressions in physical space and transform space are respectively 

/~u(r) = ~p 6ju(Ir[)  + Iu([r - zl)h~/(lz[)dz 

where h,j and/;0 are the cross RDF for particles of type i and j in physical and transform space 
respectively and 6 U is the Dirac delta function. Repeated indices do not imply summation unless 
otherwise specified. It should be noted that intra-particle contributions are limited to like 
correlations only (i = j )  by definition. Equation [10] shows the relationship between the more 
generalized fl-correlations and the Overlap function and RDF. The generalized 3-dimensional 
Overlap function Iu(y ) is defined as the volume of intersection between two spheres of diameters 
~i and trj, respectively, whose centers are separated by a distance y. This volume is depicted 



where 

schematically in figure 1. From consideration of the volumes of rotation for each sphere, the 
Overlap function in three dimensions can be shown to be 

and 

RESULTS AND DISCUSSION 

6 

Iu(y ) = -6 - - +  

0 

O~<y~<2 

0 .3 3(o'~y, + 0.]yj) ) 
2 2 + 2(Y~ +Y3) 2<'NY<~0.° [11] 

/ 

y ~>o'~ 

2 
2 - 0.j - 0.~ 0.J + 0.~ Y 0.J - 

2 ' 0.ij- 2 ' Y i = 2  8y 

2 0.~ y a j -  
Y J = 2 +  8y 

For the sake of convention we assume aj >t ai. It should be noted that the like Overlap function, 
recovered by setting i = j ,  reduces to the expression derived in Part I. The Fourier transform of 
the Overlap function is then given by 

c kai cos ~ -  - 2 sin kaj cos -~- - 2 sin 

~j(k) = 47r 2 \ k6 [12] 

The transform has units of volume 2 or length 6. 
The radial distribution function for a polydisperse system of hard spheres is obtained using the 

exact solution of the Percus-Yevick equation for a system of  hard spheres originally derived by 
Lebowitz (1964). 

I I I 

I I I 

Before calculating the density autocorrelation for a polydisperse system, we decided to examine 
a binary system of  hard spheres. Figure 2(a) details the transition of the density autocorrelation 
as we go from a monodisperse system 1 (at = 1) to monodisperse system 2 (a2=2)  while 
maintaining the total particle density (~l + ~2) constant, which translates to maintaining a constant 
area under the B(k )  curves. The concentration of A particles of diameter unity is decreased from 

I I 

I 

Y~ Yj 

Y 
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Figure !. Schematic of  the intersecting volume between two overlapping spheres of  diameters o i and o" i , 
respectively. The overlap function, l~(y) is by definition proportional to the volume of  intersection 

(cross-hatched volume). 
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Figure 2. Density autocorrelation for a binary system of particles with diameter ratios of (a) 2 and (b) 4. 
The total particle concentration was maintained at 0.20 while the concentration of the larger particles was 

0.00 (case I), 0.05 (Case II), 0.10 (Case III), 0.15 (Case IV) and 0.20 (Case V). 

0.2 to 0.0 by steps of 0.05 over the five cases, while the concentration of  the B particles is increased 
from 0 to 0.2, maintaining a constant total particle concentration of 0.2. In the monodisperse limits, 
the present results agree with the results presented in Part I. It should be noted that the current 
plots are strictly dimensional because of the ambiguity associated with determining a length scale 
in a polydisperse system. As pointed out in Part I, the location of  the first maximum in the Fourier 
space autocorrelation plots is related to the mean separation distance which, in turn, scales with 
the particle size for moderate concentrations. However for mixtures, the twin maxima in the 
transition region correspond to the now two identifiable length scales (the two particle sizes). Figure 
2(b) shows the equivalent calculation for a binary system with a diameter ratio of four. These results 
are qualitatively the same as in the previous case, the larger ratio serving only as a scaling factor. 

Next we consider a truly polydisperse system, with a Gaussian particle size distribution. The 
mean particle size and variance of  the distribution were varied to study the influence of  the range 
of  particle sizes on the density autocorrelation. Figure 3(a) shows the three Gaussian particle size 
distributions we selected, each with a mean particle diameter of  unity and standard deviations that 
lie between 0.15 and 0.25. Case I corresponds to a standard deviation of  0.15, Case II--0.20 and 
Case 111---0.25. The calculated density autocorrelation for these three cases are shown in linear and 

IJMF 20/6--E 
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logarithmic co-ordinates in figures 3(b) and 3(c) respectively. As expected the narrow range 
Gaussian is closest to the monodisperse case. With increasing width of size distributions (increasing 
polydispersity) we find that the oscillations in the spectrum are increasingly dampened out, until 
finally in Case III  they are completely removed. An explanation for the dampening of the 
oscillations with increasing spread in the distribution can be found by first re-considering the 
monodisperse system. As shown in Part I the spectrum for the density autocorrelation showed the 
surprising result of  multiple peaks, with a wavelength that scaled with the particle separation 
distance at small k and with the particle size at large k. To a first approximation, the polydisperse 
system is a superposition of many monodisperse curves, each oscillating with a wavelength that 
corresponds to its particular size. These curves have phases that interfere with each other hence 
the superposition reduces or even eliminates the oscillations, if the polydispersity is sufficient. For 
example, Case III  in figure 3(b) is a smooth monotonic curve. Figure 3(c) shows logarithmic plots 
of  the density autocorrelation for each of the different cases. It is interesting to note that the large 
k behavior in all three curves is a - 2  power-law spectrum that begins essentially immediately 
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Figure 3. Density autocorrelation for a polydisperse particle-fluid system. The particle size distribution 
was assumed Gaussian with a mean particle diameter of unity and standard deviations of 0.15 (Case I), 
0.20 (Case II) and 0.25 (Case III). Total particle concentration is maintained at 0.10. (a) Shows the particle 
size distributions, (b) shows the density autocorrelation in linear co-ordinates and (c) shows the same in 

logarithmic co-ordinates. The dashed line indicates a line of slope -2. 
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Figure 4. A comparison of particle size distributions with opposing tails. The distributions were calculated 
from [7] with ct = 5, c 2 = 2, c 3 = 1 (Case I), cl = 5, c: = 2, c 3 = 2 (Case II), cl = 5, c 2 = 2, c3 = 3 (Case III). 
Total particle concentration is maintained at 0.10. (a) Shows the particle size distributions, (b) shows the 
density autocorrelation in linear co-ordinates and (c) shows the same in logarithmic co-ordinates. The 

dashed line indicates a line slope -2 .  

fo l lowing  the m a x i m u m  in the curve.  This  large k l imi t  appea r s  to be  i n d e p e n d e n t  o f  the spread  
in  the G a u s s i a n  d i s t r ibu t ion .  W e  shal l  m o m e n t a r i l y  defer  d i scuss ing  the - 2  s p e c t r u m  while  we 
cons ide r  the  effect o f  a s y m m e t r y  in  the par t ic le  size d i s t r ibu t ion .  

T o  s tudy  the  inf luence  o f  the exact  n a t u r e  o f  the par t ic le  size d i s t r i b u t i o n  i tself  on  the 
a u t o c o r r e l a t i o n ,  we e m p l o y e d  a gener ic  f u n c t i o n  o f  the fo rm 

~t(tr,) = a~' e - '2~ '  [7] 

Dif ferent  tails (degrees o f  a s y m m e t r y )  for  the  par t ic le  size d i s t r i b u t i o n  are  o b t a i n e d  by  va ry ing  the 
p a r a m e t e r  Ca (c~ = 5 a n d  c2 = 2 t h r o u g h o u t ) .  The  results  for Ca = 1 (Case I), c3 = 2 (Case II)  a n d  
c3 = 3 (Case I I I )  are  s h o w n  in  figure 4. F r o m  figure 4(b),  it is a p p a r e n t  tha t  the qua l i t a t ive  shape  
o f  the spec t rum is s imilar ,  a n d  the on ly  q u a n t i t a t i v e  change  is in the loca t ion  o f  the m a x i m u m .  
The  loca t ion  o f  the m a x i m u m  is shi f t ing  in acco rdance  wi th  the  change  in  the  m e a n  par t ic le  size, 
which  shifts to larger  scale ( smal ler  k )  wi th  increas ing  c3. M o r e o v e r  the loga r i thmic  p lot  shown  
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in figure 4(c) indicates that the large k tail for each of  the cases is the same. The - 2  spectrum is 
apparently unaffected by the asymmetry in the distribution. 

To confirm the apparent weak dependence of  the spectrum at large k with the particle size 
distribution, a final test was done with an asymmetric case from above (Case I, c~ = 5, c2 = 2 and 
c3 = 2), a Gaussian distribution (Case II) and the distribution of Case I inverted with respect to 
the particle size. The comparative results are shown in figure 5. Once again the curves are 
remarkably similar, with the exception of Case III which is beginning to show the oscillations 
present in narrower distributions. It appears that in this case the variance of the distribution as 
compared to the relatively large mean particle size is not sufficient to dampen the oscillations. 
Nevertheless the curves all appear to approach the - 2 spectrum at large values of In k. 

Having established that the density autocorrelation is relatively insensitive to the particle size 
distribution (aside from the scaling with the mean particle size, and so long as the distribution is 
sufficiently wide), we turn to the final parameter in the problem which is the particle concentration. 
As shown in Part I, the main effect of  changing the particle concentration (all other parameters 
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Figure 5. Effect of asymmetry of  the particle size distribution on the density autocorrelation. Case I is 
a distribution described in [7] with c~ = 5, c2 = 2, c3 = 2, Case II is a Gaussian (symmetric) and Case III 
is obtained by inverting Case II with respect to the particle size. Total particle concentration is maintained 
at 0.10. (a) Shows the particle size distributions, (b) shows the density autocorrelation in linear 
co-ordinates and (c) shows the same in logarithmic co-ordinates. The dashed line indicates a line of 

slope - 2. 
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Figure 6. Effect of concentration on the density autocorrelation is observed by varying a particular 
distribution found from [7] (c~ = 5, c2 = 2, c3 = 2) with respect to the total particle concentration. The 
concentrations are 0.20 (Case I), 0.10 (Case II) and 0.05 (Case III). (a) Shows the particle size distributions, 
(b) shows the density autocorrelation in linear co-ordinates and (c) shows the same in logarithmic 

co-ordinates. The dashed line indicates a line of slope -2 .  

being the same) is to change the mean  separat ion distance. Mathemat ica l ly  we can approx imate  
the mean  separat ion distance by 

~ = [ 2 ( 1 - - ~ p ! ]  '/3 

L ~p 

where ~, is the mean  separat ion distance, ~p is the total volume fraction o f  particles and ~ is the 
volume averaged particle diameter.  At low concentra t ions  the mean particle size and the mean  
particle separa t ion distance are widely disparate,  however  the influence o f  the mean  separat ion 
distance is minimal  because nrg(k) and hence the density autocorre la t ion function is domina ted  by 
the geometr ic  Over lap  funct ion io(k ). Conversely with increasing conent ra t ion  the distr ibution 
functions become more  impor tan t ,  however  s imultaneously the mean  separat ion distance ap-  
proaches  the mean  particle size. I t  therefore appears  that  the mean  particle size is the dominan t  
pa rame te r  and that  the mean  separat ion distance plays a minor  role at  all concentrat ions.  This is 
demons t ra ted  in figure 6, which shows a single particle distr ibution with decreasing particle 
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concentration. In each case the mean particle size is the same, and the curves appear to be 
essentially the same, aside from a scaling factor related to the integral constraint 

1 f B ( k )  dk = ~p~f 8x 3 J 
There appear to be two surprising results in this study. The first one is associated with the effect 

of polydispersity on the oscillations in the spectrum. The monodisperse system had multiple peaks 
associated with particle layers at ever increasing distances, however that coherency is lost in the 
polydisperse system, hence for sufficiently widely disperse systems the oscillations disappear 
completely. The second surprise is the relative insensitivity of the results to the exact nature of the 
particle size distribution. The only important parameter (aside from a normalization constant for 
B) is the mean particle size which determines the location of the maximum in the curve. Moreover 
the logarithmic plots at large k implies a - 2  spectrum for virtually all particle distributions, so 
long as they are sufficiently polydisperse that the oscillations are suppressed. 

The -2 spectrum can be understood by re-considering the Overlap function. The previous study 
demonstrated at large k, (OtllVp)h(k),~ 1, hence the shape is dominated by the Overlap function. 
For a three-dimensional system of spheres, ~j(k) given by [6] can be expanded to give 

fk,.M 4,<: cost m) cost mp,.' 8. c°stT)°  t)ik"'X 
4 ( k ) :  k 4 - k '  sin -~- 

2 /kai \  
8, c o s / T } ¢ ,  (k jh . /*mh sint--~- ) 16rr 2 slnt-~-) sint-~- ) 

k / 
k 5 k 6 

At large k the envelope for the oscillating ~j(k) decays as k-4, hence the envelope for the plots 
shown in figures 3-6 must decay as k -2 because of the factor of 4nk 2. In the polydisperse system, 
there is an ~j(k) contribution for each particle size (as well as cross correlations), however they 
all decay as k -4 at large k, therefore once the oscillations are eliminated by the interference of 
different phases, the curve decays monotonically like k-4. Remarkably this result appears to be 
more closely tied to the shape of the particles than to their distribution. 

This result has implications for multiphase flows of two immiscible fluids. For example consider 
Rayleigh-Taylor mixing, which occurs when a denser fluid is suspended above a lighter fluid in 
a gravitational field. For modeling purposes it may be tempting to conceptualize the mixing region 
as a collection of spheres of one fluid surrounded by the other. This simplistic thinking, however 
would not allow any other spectrum for the density autocorrelation than - 2  as demonstrated 
above. Furthermore, if another spectrum existed within the mixing layer (e.g. - 5/3) it would not 
imply that the size or spatial distribution of  the blobs was incorrectly represented, but that their 
shape was not well represented by a sphere. Equivalently if real turbulence generates a spectrum 
different than - 2 at large In k, the shapes of the individual regions must be something other than 
a sphere (unfortunately there are few measurements of the density spectrum in such a system, so 
we can only speculate). 

EXTENSION TO HIGHLY DRIVEN FLOWS 

Once again, it is possible to extend the results presented in the previous section to the 
hypothetical flow caused by subjecting a particle-fluid mixture to an asymptotically large pressure 
gradient. The pressure gradient will cause the particulate phase to move relative to the fluid phase 
(i.e. interpenetration) as was seen in the monodisperse system, however in this case, though the 
velocity within a particular category will be uniform, the velocity of particles of different diameters 
need not be the same. This is evident by considering dependence of the terminal velocity of a 
particle on its diameter. It would appear that paticles with a larger diameter will achieve a greater 
terminal velocity than smaller ones. This introduces a fluctuationai component to the particulate 
velocity even in this asymptotic limit. The particle velocities were estimated from their terminal 
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velocities. We consider both Re --. 0 and Re --, m for the drag coefficient, resulting in the following 
relationships between the particle velocity and diameter 

and 

Re~0:  f i j=U~  

R e ~ m :  f i j = U ~  [13] 

where ~ is the mean particle radius (see dimensional analysis above) and U is the velocity of the 
average size particle. The fluid velocity can then be expressed by (assuming the mean velocity is 
zero) 

ur = - ~ ajfif [14] 
j =  l o~f 

Equations [13] and [14] can be used to define the velocity fluctuation in terms of  the fl-correlations 
as shown below 

U'(X) = ~,, flj(X)(lfi j -- Qf[) [15] 
j=l  

Notice that the coefficient for each of  the/~-functions is no longer uniform because of the variations 
in the particle velocities. This introduces a complexity that was not seen in the monodisperse system 
because in that case, the particle diameters and the induced velocities were constant. The effect this 
has on higher-order moments can be seen by considering the turbulent mass flux, which is defined 
as A = p'(x)u'(x + r). From [7] and [15] we have 

A(r) = (pp - pf) ~ (]fij - fill) ~ flt~(r) [16] 
j = l  i = l  

It is clear from [16] that the spectral shape of the mass flux will differ from the density 
autocorrelation because the particle velocities introduces a weighting factor into the sum over the 
fl-correlations. Figure 7 shows a normalized plot of B(k) and ~,(k) for a Gaussian particle size 
distribution, and with the two different dependencies of  the particle velocity with diameter (see [13]). 
The weighting favors the large-scale contributions over the small scale ones, therefore the ~.(k) 
curve appears to be shifted toward small k (large scale). This is even more apparent in figure 8, 
which shows a comparison between B (k) and the normalized, non-zero component of the Reynolds 
stress $(k). Because the Reynolds stress is second order in velocity the shift is more dramatic. 

It was shown in Part I that for a monodisperse system of particles, the spectra of virtually all 
moments coincide with the B-spectrum in this asymptotic limit. This is not the case for a 
polydisperse system, however, because the weighting of the fl-correlations depends on the order 
in velocity of  the higher-order moment. This implies spectra of a given order in velocity will collapse, 
but not necessarily correlations that have different orders in velocity. This severely complicates 
the results shown previously in table 1 of  Part I because there is no longer a simple relationship 
between the higher-order moments and the select variables [~, b, A and B(r)]. For completeness 
we tabulate the same moments for the polydisperse system minus column 3 which is no longer 
relevant. 

Part I also included a perturbation analysis for estimasting the effect that hydrodynamic forces 
may have on the interpenetrating particles. The hydrodynamic attractive potential was caused by 
a Bernoulli force that acts in the direction of  the separation vector between the particles. An 
equivalent force will also be acting on the polydisperse particles, however the analysis would no 
longer be valid because effects due to relative motion of  particles of  different sizes may overwhelm 
the venturi force. We therefore defer the discussion of  the instability of  the particle assembly until 
a more realistic direct numerical simulation or experiment can provide the necessary information. 
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Figure 7. A normalized plot of 4nk2.~(k) with two limiting velocity dependencies ([13]) and a Gaussian 
particle size distribution. A plot of 4nk2B(k) is also shown for the sake of comparison. 
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Figure 8. A normalized plot of the non-zero component of 4nk21"(k) with the two limiting velocity 
dependencies ([13]) and a Gaussian particle size distribution. Again, a plot of 4nk-~(k) is also shown for 

the sake of comparison. 



SPECTRUM OF DENSITY FLUCTUATIONS--II 1051 

Table 1. Relationships for several common higher-order spectral moments in 
terms of the Pu correlations for the ideal case of uniform interpenetration of the 
particulate and fluid phases. Note that terms shown in brackets in column 1 are 
evaluated at the same point and tensors have been designated by a "="  subscript 

High-order moment Relationship t o  p-correlation 

(l) B(r)=p'p' (p,-p,): ~ ~. p~ 
iffiljffil 

(3) A(r)= -p 'u '  (pp--pf) ~. ~. a,j(fij--fif) 
i=l j=l  

(4) p'(u'. ') (=p - =f)(pp - pf): ~. ~ ,q(ilj-- fir) 
i=l j=l  

(5) - u' 
P PpPf i= I j= I 

(6) (pCpu")T" .pCpTp(pp-pf) ~,, ~ ~/j(~j_fif) 
0~pPp + =fPf i = l j = l  

( 7 )  R ( r )  = ( p u " ) u "  J = ' j  = 1 

~ppp -'{'- ~fpf 

(8) T(r) = u'u ~ ~. ~ Pq(~,- Or)(~j- i ,)  
i = l j = l  

C O N C L U S I O N S  

Previous calculations of the spectrum of the density autocorrelation for a monodisperse 
particle-fluid system have been extended to the more general case of a polydisperse system with 
a wide range of  particle sizes. It was observed that, with an increasing width of the particle size 
distribution or polydispersity, the oscillations in the autocorrelation curve were dampened or even 
eliminated in certain cases, leading to a smooth, monotonically decreasing curve at large k. 
Furthermore at large wavenumbers the autocorrelation was found to obey a - 2  power-law 
spectrum dictated by the spherical geometry assumed in the problem. These results are general and 
the autocorrelation does not seem to be sensitive to any variations in the exact nature of the size 
distribution or the particle concentration, so long as the distribution is sufficiently wide. The fact 
that the autocorrelation spectrum is locked into a - 2  spectrum at large wavenumbers implies a 
limitation in the use of the analogy between variable-density and multiphase flows, proposed by 
Collins (1992) at the spectral level. This limitation can be overcome by relaxing the restriction of 
the present study of  spheres to more general particulate flows. That work is in progress. 

The results for the density autocorrelation were extended to the special case of a particle-fluid 
system experiencing an asymptotically large pressure gradient. Again it was shown that higher- 
order moments can be calculated from the fl-correlations, however in this case the particle velocities 
provide a weighting of  the functions that depends on the order in velocity of the moment. It appears 
that collapse of  spectra of a given order in velocity is observed, but spectra of different orders in 
velocity are unique. They can be characterized by the functional relationship between the particle 
velocity and particle size for which two examples were given (Re-*0,  Re--, ~ ) .  The simple 
relationships that reduced the order in the monodisperse particle system are lost in the polydisperse 
case. Furthermore the analysis for determining the effect of  the induced hydrodynamic force on 
the particles could not be extended because it appears that other effects may dominate (e.g. relative 
motion of  particles of  different size). A thorough understanding of the effect of polydispersity on 
quantities such as the RDF and other two-point correlations required in the theory presented herein 
will come from experimental and simulation data. Work along these lines is in progress. 
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